Login / Signup

Production of Biocalcium from Fermented Fish Bone Residue for Fish Emulsion Sausage Fortification.

Somsamorn GawborisutChavis KetkaewThongsa Buasook
Published in: Foods (Basel, Switzerland) (2024)
Fermented fish bone residue (FFBR) is an underused by-product of the industrial-scale production of fermented fish sauce. Subjecting FFBR to proper alkaline treatment can transform FFBR into biocalcium, which can be added to fish emulsion sausage (FES) to increase its calcium content. This study comprised two experiments. First, we aimed to find the most suitable alkaline treatment conditions for preparing biocalcium from FFBR. Alkaline treatments combining three sodium hydroxide (NaOH) concentrations (0%, 3%, and 6%) and three soaking times (0, 1, and 2 h) were tested. Quality parameters of alkaline-treated biocalcium (crude protein, crude fat, ash content, calcium, phosphorus, crude fiber, salt content, CIE color values, morphology of biocalcium particles, and the intensity of the fermented fish smell) were assessed. Second, we fortified FES with the properly treated biocalcium (0, 12, 24, or 36 g) and evaluated the sausage's calcium, phosphorus, crude fiber, salt content, pH, CIE color values, texture profile analysis (TPA), emulsion stability, and sensory criteria. It was found that treatment with 3% or 6% NaOH produced better crude protein, ash content, calcium, and CIE color value results than no alkaline treatment. These two NaOH concentrations effectively lowered the salt content and the intensity of the fermented fish smell. However, 3% and 6% NaOH produced similar results. A soaking time of 1 h or 2 h produced better results than no soaking in terms of crude protein, crude fat, ash content, calcium, phosphorus, CIE color values, and the intensity of fermented fish smell. However, 1 h and 2 h produced similar results. It is concluded that 3% NaOH and soaking for 1 h would be the most suitable alkaline treatment to prepare biocalcium from FFBR. Fortifying FES with biocalcium from FFBR increased the calcium and phosphorus contents but slightly reduced TPA. The other FES quality parameters were unaffected by biocalcium fortification.
Keyphrases
  • adipose tissue
  • sewage sludge
  • anaerobic digestion
  • magnetic resonance imaging
  • magnetic resonance
  • body composition
  • quality improvement
  • gold nanoparticles
  • lactic acid
  • replacement therapy
  • postmenopausal women