Login / Signup

Palatable food access impacts expression of amylin receptor components in the mesocorticolimbic system.

Houda NashawiTyler J GustafsonElizabeth G Mietlicki-Baase
Published in: Experimental physiology (2020)
Amylin is a pancreas- and brain-derived peptide that acts within the CNS to promote negative energy balance. However, our understanding of the CNS sites of action for amylin remains incomplete. Here, we investigate the effect of amylin receptor (AmyR) activation in the nucleus accumbens core (NAcC) on the intake of bland and palatable foods. Intra-NAcC injection of the AmyR agonist salmon calcitonin or amylin itself in male chow-fed rats had no effect on food intake, meal size or number of meals. However, in chow-fed rats with access to fat solution, although fat intake was not affected by intra-NAcC AmyR activation, subsequent chow intake was suppressed. Given that mesolimbic AmyR activation suppresses energy intake in rats with access to fat solution, we tested whether fat access changes AmyR expression in key mesocorticolimbic nuclei. Fat exposure did not affect NAcC AmyR expression, whereas in the accumbens shell, expression of receptor activity modifying protein (RAMP) 3 was significantly reduced in fat-consuming rats. We show that all components of AmyRs are expressed in the medial prefrontal cortex and central nucleus of the amygdala; fat access significantly reduced expression of calcitonin receptor-A in the central nucleus of the amygdala and RAMP2 in the medial prefrontal cortex. Taken together, these results indicate that intra-NAcC AmyR activation can suppress energy intake and, furthermore, suggest that AmyR signalling in a broader range of mesocorticolimbic sites might have a role in mediating the effects of amylin on food intake and body weight.
Keyphrases
  • prefrontal cortex
  • poor prognosis
  • adipose tissue
  • binding protein
  • fatty acid
  • body weight
  • weight gain
  • functional connectivity
  • resting state
  • blood brain barrier
  • body mass index
  • small molecule
  • amino acid
  • human health