Login / Signup

Genomic features of Helicobacter pylori-naïve diffuse-type gastric cancer.

Ken NamikawaNorio TanakaYuki OtaManabu TakamatsuMayuko KosugiYoshitaka TokaiShoichi YoshimizuYusuke HoriuchiAkiyoshi IshiyamaToshiyuki YoshioToshiaki HirasawaSayuri AminoRie FuruyaOsamu GotohTomoko KaneyasuIzuma NakayamaYu ImamuraTetsuo NodaJunko FujisakiSeiichi Mori
Published in: The Journal of pathology (2022)
Helicobacter pylori (HP) is a major etiologic driver of diffuse-type gastric cancer (DGC). However, improvements in hygiene have led to an increase in the prevalence of HP-naïve DGC; that is, DGC that occurs independent of HP. Although multiple genomic cohort studies for gastric cancer have been conducted, including studies for DGC, distinctive genomic differences between HP-exposed and HP-naïve DGC remain largely unknown. Here, we employed exome and RNA sequencing with immunohistochemical analyses to perform binary comparisons between 36 HP-exposed and 27 HP-naïve DGCs from sporadic, early-stage, and intramucosal or submucosal tumor samples. Among the samples, 33 HP-exposed and 17 HP-naïve samples had been preserved as fresh-frozen samples. HP infection status was determined using stringent criteria. HP-exposed DGCs exhibited an increased single nucleotide variant burden (HP-exposed DGCs; 1.97 [0.48-7.19] and HP-naïve DGCs; 1.09 [0.38-3.68] per megabase; p = 0.0003) and a higher prevalence of chromosome arm-level aneuploidies (p < 0.0001). CDH1 was mutated at similar frequencies in both groups, whereas the RHOA-ARHGAP pathway misregulation was exclusive to HP-exposed DGCs (p = 0.0167). HP-exposed DGCs showed gains in chromosome arms 8p/8q (p < 0.0001), 7p (p = 0.0035), and 7q (p = 0.0354), and losses in 16q (p = 0.0167). Immunohistochemical analyses revealed a higher expression of intestinal markers such as CD10 (p < 0.0001) and CDX2 (p = 0.0002) and a lower expression of the gastric marker, MUC5AC (p = 0.0305) among HP-exposed DGCs. HP-naïve DGCs, on the other hand, had a purely gastric marker phenotype. This work reveals that HP-naïve and HP-exposed DGCs develop along different molecular pathways, which provide a basis for early detection strategies in high incidence settings. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Keyphrases