Login / Signup

Hyperspectral Imaging and Chemometrics for Authentication of Extra Virgin Olive Oil: A Comparative Approach with FTIR, UV-VIS, Raman, and GC-MS.

Derick MalaviAmin NikkhahKatleen RaesSam Van Haute
Published in: Foods (Basel, Switzerland) (2023)
Limited information on monitoring adulteration in extra virgin olive oil (EVOO) by hyperspectral imaging (HSI) exists. This work presents a comparative study of chemometrics for the authentication and quantification of adulteration in EVOO with cheaper edible oils using GC-MS, HSI, FTIR, Raman and UV-Vis spectroscopies. The adulteration mixtures were prepared by separately blending safflower oil, corn oil, soybean oil, canola oil, sunflower oil, and sesame oil with authentic EVOO in different concentrations (0-20%, m/m). Partial least squares-discriminant analysis (PLS-DA) and PLS regression models were then built for the classification and quantification of adulteration in olive oil, respectively. HSI, FTIR, UV-Vis, Raman, and GC-MS combined with PLS-DA achieved correct classification accuracies of 100%, 99.8%, 99.6%, 96.6%, and 93.7%, respectively, in the discrimination of authentic and adulterated olive oil. The overall PLS regression model using HSI data was the best in predicting the concentration of adulterants in olive oil with a low root mean square error of prediction (RMSEP) of 1.1%, high R 2 pred (0.97), and high residual predictive deviation (RPD) of 6.0. The findings suggest the potential of HSI technology as a fast and non-destructive technique to control fraud in the olive oil industry.
Keyphrases
  • fatty acid
  • machine learning
  • big data
  • climate change
  • social media