Login / Signup

Atomistic Characterization of Gramicidin Channel Formation.

Delin SunStewart HeWilliam F Drew BennettCamille L BilodeauOlaf S AndersenFelice C LightstoneHelgi I Ingólfsson
Published in: Journal of chemical theory and computation (2020)
We investigated gramicidin A (gA) subunit dimerization in lipid bilayers using microsecond-long replica-exchange umbrella sampling simulations, millisecond-long unbiased molecular dynamics simulations, and machine learning. Our simulations led to a dimer structure that is indistinguishable from the experimentally determined gA channel structures, with the two gA subunits joined by six hydrogen bonds (6HB). The simulations also uncovered two additional dimer structures, with different gA-gA stacking orientations that were stabilized by four or two hydrogen bonds (4HB or 2HB). When examining the temporal evolution of the dimerization, we found that two bilayer-inserted gA subunits can form the 6HB dimer directly, with no discernible intermediate states, as well as through paths that involve the 2HB and 4HB dimers.
Keyphrases
  • pet ct
  • molecular dynamics simulations
  • molecular dynamics
  • machine learning
  • molecular docking
  • monte carlo
  • systematic review
  • artificial intelligence
  • fatty acid
  • big data
  • mass spectrometry