Login / Signup

Future of Mesoporous Silica Nanoparticles in Nanomedicine: Protocol for Reproducible Synthesis, Characterization, Lipid Coating, and Loading of Therapeutics (Chemotherapeutic, Proteins, siRNA and mRNA).

Achraf NoureddineAngelea Maestas-OlguinLien TangJim I Corman-HijarMarian OlewineJacob A KrawchuckJohanna Tsala EbodeChuzube EdehCaleb DangOscar A NegreteJohn WattTamara HowardEric N CokerJimin GuoC Jeffrey Brinker
Published in: ACS nano (2023)
Owing to their uniform and tunable particle size, pore size, and shape, along with their modular surface chemistry and biocompatibility, mesoporous silica nanoparticles (MSNs) have found extensive applications as nanocarriers to deliver therapeutic, diagnostic and combined "theranostic" cargos to cells and tissues. Although thoroughly investigated, MSN have garnered FDA approval for only one MSN system via oral administration. One possible reason is that there is no recognized, reproducible, and widely adopted MSN synthetic protocol, meaning not all MSNs are created equal in the laboratory nor in the eyes of the FDA. This manuscript provides the sol-gel and MSN research communities a reproducible, fully characterized synthetic protocol to synthesize MSNs and corresponding lipid-coated MSN delivery vehicles with predetermined particle size, pore size, and drug loading and release characteristics. By carefully articulating the step-by-step synthetic procedures and highlighting critical points and troubleshooting, augmented with videos and schematics, this Article will help researchers entering this rapidly expanding field to yield reliable results.
Keyphrases