Dietary β-Cryptoxanthin and α-Carotene Have Greater Apparent Bioavailability Than β-Carotene in Subjects from Countries with Different Dietary Patterns.
Begoña Olmedilla-AlonsoElena Rodríguez-RodríguezBeatriz Beltrán-de-MiguelRocío Estévez-SantiagoPublished in: Nutrients (2020)
β-carotene, α-carotene and β-cryptoxanthin are greater contributors to vitamin A intake than retinol in the human diet for most people around the world. Their contribution depends on several factors, including bioavailability and capacity of conversion into retinol. There is an increasing body of research showing that the use of retinol activity equivalents or retinol equivalents could lead to the underestimation of the contribution of β-cryptoxanthin and of α-carotene. The aim is to assess their apparent bioavailability by comparing concentrations in blood to their dietary intakes and identifying the major food contributors to their dietary intake. Dietary intake (3-day 24-h records) and serum concentrations (by HPLC) were calculated in normolipemic subjects with adequate retinol status (≥1.1 µmol/L) from our studies (n = 633) and apparent bioavailability calculated from 22 other studies (n = 29,700). Apparent bioavailability was calculated as the ratio of concentration in the blood to carotenoid intake. Apparent bioavailabilities for α-carotene and β-cryptoxanthin were compared to those for β-carotene. Eating comparable amounts of α-carotene, β-cryptoxanthin and β-carotene foods resulted in 55% greater α-carotene (95% CI 35, 90) and 686% higher β-cryptoxanthin (95% CI 556, 1016) concentrations than β-carotene in blood. This suggests differences in the apparent bioavailability of α-carotene and β-cryptoxanthin and even larger differences with β-cryptoxanthin, greater than that of β-carotene. Four fruits (tomato, orange, tangerine, red pepper) and two vegetables (carrot, spinach) are the main contributors to their dietary intake (>50%) in Europeans.