β-Ionone Attenuates Dexamethasone-Induced Suppression of Collagen and Hyaluronic Acid Synthesis in Human Dermal Fibroblasts.
Dabin ChoiWesuk KangSoyoon ParkBomin SonTaesun ParkPublished in: Biomolecules (2021)
Stress is a major contributing factor of skin aging, which is clinically characterized by wrinkles, loss of elasticity, and dryness. In particular, glucocorticoids are generally considered key hormones for promoting stress-induced skin aging through binding to glucocorticoid receptors (GRs). In this work, we aimed to investigate whether β-ionone (a compound occurring in various foods such as carrots and almonds) attenuates dexamethasone-induced suppression of collagen and hyaluronic acid synthesis in human dermal fibroblasts, and to explore the mechanisms involved. We found that β-ionone promoted collagen production dose-dependently and increased mRNA expression levels, including collagen type I α 1 chain (COL1A1) and COL1A2 in dexamethasone-treated human dermal fibroblasts. It also raised hyaluronic acid synthase mRNA expression and hyaluronic acid levels. Notably, β-ionone inhibited cortisol binding to GR, subsequent dexamethasone-induced GR signaling, and the expression of several GR target genes. Our results reveal the strong potential of β-ionone for preventing stress-induced skin aging and suggest that its effects are related to the inhibition of GR signaling in human dermal fibroblasts.
Keyphrases