Co-infection with human polyomavirus BK enhances gene expression and replication of human adenovirus.
Iwona Bil-LulaMieczysław WoźniakPublished in: Archives of virology (2018)
Immunocompromised patients are susceptible to multiple viral infections. Relevant interactions between co-infecting viruses might result from viral regulatory genes which trans-activate or repress the expression of host cell genes as well as the genes of any co-infecting virus. The aim of the current study was to show that the replication of human adenovirus 5 is enhanced by co-infection with BK polyomavirus and is associated with increased expression of proteins including early region 4 open reading frame 1 and both the large tumor antigen and small tumor antigen. Clinical samples of whole blood and urine from 156 hematopoietic stem cell transplant recipients were tested. We also inoculated adenocarcinomic human alveolar basal epithelial cells with both human adenovirus 5 and BK polyomavirus to evaluate if co-infection of viruses affected their replication. Data showed that adenovirus load was significantly higher in the plasma (mean 7.5 x 103 ± 8.5 x 102 copies/ml) and urine (mean 1.9 x 103 ± 8.0 x 102 copies/ml) of samples from patients with co-infections, in comparison to samples from patients with isolated adenovirus infection. In vitro co-infection led to an increased (8.6 times) expression of the adenovirus early region 4 open reading frame gene 48 hours post-inoculation. The expression of the early region 4 open reading frame gene positively correlated with the expression of BK polyomavirus large tumor antigen (r = 0.90, p < 0.0001) and small tumor antigen (r = 0.83, p < 0.001) genes. The enhanced expression of the early region 4 open reading frame gene due to co-infection with BK polyomavirus was associated with enhanced adenovirus, but not BK polyomavirus, replication. The current study provides evidence that co-infection of adenovirus and BK polyomavirus contributes to enhanced adenovirus replication. Data obtained from this study may have significant importance in the clinical setting.
Keyphrases
- poor prognosis
- endothelial cells
- genome wide
- gene expression
- gene therapy
- induced pluripotent stem cells
- genome wide identification
- binding protein
- working memory
- pluripotent stem cells
- sars cov
- dna methylation
- stem cells
- copy number
- long non coding rna
- hematopoietic stem cell
- newly diagnosed
- ejection fraction
- intensive care unit
- single cell
- genome wide analysis
- acute respiratory distress syndrome
- data analysis
- mechanical ventilation
- clinical evaluation
- genetic diversity