Login / Signup

Human iPSC Modeling of Genetic Febrile Seizure Reveals Aberrant Molecular and Physiological Features Underlying an Impaired Neuronal Activity.

Stefania ScaliseClara ZanninoValeria LucchinoMichela Lo ConteLuana ScaramuzzinoPierangelo CifelliTiziano D'AndreaKatiuscia MartinelloSergio FucileEleonora PalmaAntonio GambardellaGabriele RuffoloGiovanni CudaElvira Immacolata Parrotta
Published in: Biomedicines (2022)
Mutations in SCN1A gene, encoding the voltage-gated sodium channel (VGSC) Na V 1.1, are widely recognized as a leading cause of genetic febrile seizures (FS), due to the decrease in the Na + current density, mainly affecting the inhibitory neuronal transmission. Here, we generated induced pluripotent stem cells (iPSCs)-derived neurons (idNs) from a patient belonging to a genetically well-characterized Italian family, carrying the c.434T > C mutation in SCN1A gene (hereafter SCN1A M145T ). A side-by-side comparison of diseased and healthy idNs revealed an overall maturation delay of SCN1A M145T cells. Membranes isolated from both diseased and control idNs were injected into Xenopus oocytes and both GABA and AMPA currents were successfully recorded. Patch-clamp measurements on idNs revealed depolarized action potential for SCN1A M145T , suggesting a reduced excitability. Expression analyses of VGSCs and chloride co-transporters NKCC1 and KCC2 showed a cellular "dysmaturity" of mutated idNs, strengthened by the high expression of SCN3A, a more fetal-like VGSC isoform, and a high NKCC1 / KCC2 ratio, in mutated cells. Overall, we provide strong evidence for an intrinsic cellular immaturity, underscoring the role of mutant Na V 1.1 in the development of FS. Furthermore, our data are strengthening previous findings obtained using transfected cells and recordings on human slices, demonstrating that diseased idNs represent a powerful tool for personalized therapy and ex vivo drug screening for human epileptic disorders.
Keyphrases