Liquid Chromatography High-Resolution Mass Spectrometry Identifies the Glycation Sites of Bovine Serum Albumin Induced by d-Ribose with Ultrasonic Treatment.
Nanhai ZhangZong Cai TuHui WangGuangxian LiuZhenxing WangTao HuangXu QinXing XieA'mei WangPublished in: Journal of agricultural and food chemistry (2018)
Ultrasonication is an emerging technology applied in food processing and biological experimental pretreatments. Cavitation phenomena induced during ultrasonic treatment can generate localized high temperature and pressure, which can result in glycation reaction between protein and reducing sugars. In this study, the mixture of bovine serum albumin (BSA) and d-ribose was treated under 600 W for different times. Interestingly, a large amount of carbonized black materials appeared after ultrasonication, while the UV absorbance and intrinsic fluorescence spectra reflecting conformational changes were not obvious. Only 12 sites (11 lysines and 1 arginine) of the BSA with ribose under ultrasonic treatment for 35 min were identified through liquid chromatography high-resolution mass spectrometry (LCHR-MS). K547, K548, R359/R360, and K587 were the most reactive glycated sites, with the average degree of substitution per peptide molecule (DSP) value ranging from 15 to 35%. The glycated modification was distributed not only in domain III, but also in domains I and II. The glycated modification could occur during ultrasonic treatment, thereby influencing the properties of biomacromolecule after extraction.