Login / Signup

Reading and Writing Digital Information in TNA.

Kefan YangCailen M McCloskeyJohn C Chaput
Published in: ACS synthetic biology (2020)
DNA has become a popular soft material for low energy, high-density information storage, but it is susceptible to damage through oxidation, pH, temperature, and nucleases in the environment. Here, we describe a new molecular chemotype for data archiving based on the unnatural genetic framework of α-l-threofuranosyl nucleic acid (TNA). Using a simple genetic coding strategy, 23 kilobytes of digital information were stored in DNA-primed TNA oligonucleotides and recovered with perfect accuracy after exposure to biological nucleases that destroyed equivalent DNA messages. We suggest that these results extend the capacity for nucleic acids to function as a soft material for low energy, high-density information storage by providing a safeguard against information loss caused by nuclease digestion.
Keyphrases
  • high density
  • nucleic acid
  • health information
  • circulating tumor
  • single molecule
  • cell free
  • genome wide
  • genome editing
  • gene expression
  • hydrogen peroxide
  • big data
  • room temperature
  • dna binding