Login / Signup

Analysis of the insecticide resistance mechanism in Anopheles culicifacies sensu lato from a malaria-endemic state in India.

Tazeen I KareemiAshok K MishraSunil K ChandJitendra K NirankarAnup K VishwakarmaArchana TiwariPraveen Kumar Bharti
Published in: Transactions of the Royal Society of Tropical Medicine and Hygiene (2021)
The study revealed that expression of the genes (CYP6Z1 and GSTe2) conferring metabolic resistance play a key role in insecticide resistance in A. culicifacies populations in central India. However, mutations L101F, L10104S and V10101L also have a role to some extent in spreading resistance. GeneBank accession numbers: MW559058, MW559059 and MW559060 Cover Image: Workflow of Chimera-Modeller interface. In the top window of Chimera's multi-align viewer the sequence alignment of VGSC proteins of human (pdb id_6AGF), cockroach (pdb id 5XOM) and A. culicifacies (ACT176122.1) is shown. The dialog box in the middle is of the comparative modelling tool of Modeller. The A. culicifacies sequence is designated as the target while human and cockroach sequences are templates. Upon selection of the template sequences in the dialog box, the structures of the respective proteins are displayed in the Chimera window. As the run is completed, the results are displayed in the form of a list of models with their scores in a table.
Keyphrases