Login / Signup

Pollen protein and lipid content influence resilience to insecticides in honey bees (Apis mellifera).

Makaylee K CroneChristina M Grozinger
Published in: The Journal of experimental biology (2021)
In honey bees (Apis mellifera), there is growing evidence that the impacts of multiple stressors can be mitigated by quality nutrition. Pollen, which is the primary source of protein and lipids in bees diets, is particularly critical for generating more resilient phenotypes. Here, we evaluate the relationship between pollen protein-to-lipid ratios (P:Ls) and honey bee insecticide resilience. We hypothesized that pollen diets richer in lipids would lead to increased survival in bees exposed to insecticides, as pollen-derived lipids have previously been shown to improve bee resilience to pathogens and parasites. Furthermore, lipid metabolic processes are altered in bees exposed to insecticides.We fed age-matched bees pollen diets of different P:Ls by altering a base pollen by either adding protein (casein powder) or lipids (canola oil) and simulating chronic insecticide exposure by feeding bees an organophosphate (Chlorpyrifos). We also tested pollen diets of naturally different P:Ls to determine if results are consistent. Linear regression analysis revealed that mean survival time for altered diets was best explained by protein concentration (p =0.04 , adjusted R2 =0.92), and that mean survival time for natural diets was best explained by P:L ratio (p =0.008 , adjusted R2 =0.93). Our results indicate that higher ratios of dietary protein to lipid has a negative effect on bee physiology when combined with insecticide exposure, while lower ratios have a positive effect. These results suggest that protein and lipid intake differentially influence insecticide response in bees, laying the groundwork for future studies of metabolic processes and development of improved diets.
Keyphrases
  • weight loss
  • fatty acid
  • protein protein
  • aedes aegypti
  • amino acid
  • climate change
  • binding protein
  • social support
  • physical activity
  • small molecule
  • depressive symptoms
  • current status