Login / Signup

Differential Modulation of Polycomb-Associated Histone Marks by cBAF, pBAF, and gBAF Complexes.

Mary BergwellJinYoung ParkJacob G Kirkland
Published in: bioRxiv : the preprint server for biology (2023)
Chromatin regulators are a group of proteins that can alter the physical properties of chromatin to make it more or less permissive to transcription by modulating another protein's access to a specific DNA sequence through changes in nucleosome occupancy or histone modifications at a particular locus. Mammalian SWI/SNF complexes (mSWI/SNF) are a group of ATPase-dependent chromatin remodelers that alter chromatin states. In mouse embryonic stem cells (mESCs), there are three primary forms of mSWI/SNF: canonical BAF (cBAF), polybromo-associated BAF (pBAF), and GLTSCR-associated BAF (gBAF or ncBAF). While cBAF and gBAF contain the SS18 protein subunit, pBAF lacks SS18. Previous studies used a novel dCas9-mediated inducible recruitment (FIRE-Cas9) of mSWI/SNF complexes via SS18 to the Nkx2.9 locus. Nkx2.9 is a developmentally regulated gene that requires mSWI/SNF for transcriptional activation during neural differentiation. However, in mESCs, Nkx2.9 is bivalent, meaning nucleosomes at the locus have both active and polycomb-associated repressive modifications. Upon recruitment of SS18-containing complexes, polycomb-associated histone marks are removed, followed by transcriptional activation of Nkx2.9 . However, since both cBAF and gBAF share the SS18 subunit, it is unclear whether one or both complexes oppose the polycomb repressive marks. The ability of pBAF to do the same also remains unknown. In this study, we used unique subunits to individually recruit the three complexes to the Nkx2.9 locus. Here, we show that cBAF most effectively opposes polycomb repressive marks at Nkx2.9 , leading to transcriptional activation of the gene. Recruitment of cBAF complexes leads to a significant loss of the polycomb repressive-2 H3K27me3 and polycomb repressive-1 H2AK119ub histone marks, whereas gBAF and pBAF do not. Moreover, nucleosome occupancy alone cannot explain the loss of these marks. Our results demonstrate that cBAF has a unique role in the direct opposition of polycomb-associated histone modifications that gBAF and pBAF do not share.
Keyphrases