Ferroptosis is a form of nonapoptotic cell death characterized by iron-dependent peroxidation of polyunsaturated phospholipids. However, much remains unknown about the regulators of ferroptosis. Here, using CRISPR-Cas9-mediated genetic screening, we identify protein arginine methyltransferase 1 (PRMT1) as a crucial promoter of ferroptosis. We find that PRMT1 decreases the expression of solute carrier family 7 member 11 (SLC7A11) to limit the abundance of intracellular glutathione (GSH). Moreover, we show that PRMT1 interacts with ferroptosis suppressor protein 1 (FSP1), a GSH-independent ferroptosis suppressor, to inhibit the membrane localization and enzymatic activity of FSP1 through arginine dimethylation at R316, thus reducing CoQ10H2 content and inducing ferroptosis sensitivity. Importantly, genetic depletion or pharmacological inhibition of PRMT1 in mice prevents ferroptotic events in the liver and improves the overall survival under concanavalin A (ConA) exposure. Hence, our findings suggest that PRMT1 is a key regulator of ferroptosis and a potential target for antiferroptosis therapeutics.
Keyphrases
- cell death
- genome wide
- crispr cas
- cell cycle arrest
- transcription factor
- genome editing
- dna methylation
- nitric oxide
- fatty acid
- copy number
- amino acid
- type diabetes
- hydrogen peroxide
- fluorescent probe
- protein protein
- risk assessment
- cell proliferation
- high fat diet induced
- reactive oxygen species
- genome wide identification