Login / Signup

Effect of Prebiotic Polysaccharides on the Rheological Properties of Reduced Sugar Potato Starch Based Desserts.

Dorota GałkowskaMonika PołudniakMariusz WitczakLesław Juszczak
Published in: Polymers (2020)
The aim of the study was to assess the possibility of using polysaccharides: inulin and polydextrose in combination with steviol glycosides as sucrose substitutes in starch-based desserts with reduced sugar content and to determine their influence on the rheological properties of these desserts. The samples (starch-milk desserts) were prepared from native potato starch, milk, dye, flavouring agent, and sucrose. The sucrose was partially or completely substituted with steviol glycosides and inulin or polydextrose. The rheological evaluation of the desserts was performed by determining pasting characteristics, viscosity curves, creep and recovery curves and mechanical spectra. Substitution of sucrose with prebiotic polysaccharides modified the rheological characteristics of the starch-milk desserts to a degree depending on the type and level of the substituting agent. Inulin reduced the peak viscosity of starch-milk paste, while it had no effect on the final viscosity of the product, contrary to polydextrose, which increased value of the latter parameter. The desserts exhibited a non-Newtonian, shear-thinning flow behaviour. The use of inulin, in both the highest and the lowest concentrations, significantly changed the consistency coefficient and the flow index values, while such a phenomenon was not observed in the case of polydextrose. The desserts with inulin showed increased values of the storage modulus and reduced susceptibility to stress, manifesting strengthened viscoelastic structure. The results indicate that the both prebiotic polysaccharides can serve as substitutes for sucrose in desserts with reduced sugar contents.
Keyphrases
  • lactic acid
  • magnetic resonance imaging
  • magnetic resonance
  • molecular docking
  • stress induced
  • high resolution
  • molecular dynamics simulations
  • heat stress
  • atomic force microscopy