Therapeutic Potential of Morin Hydrate Against Rifampicin Induced Hepato and Renotoxicity in Albino Wistar Rats: Modulation of Organ Function, Oxidative Stress and Inflammatory Response.
Harvesh Kumar RanaAmit Kumar SinghAbhay Kumar PandeyPublished in: Indian journal of clinical biochemistry : IJCB (2023)
Tuberculosis (TB) is a challenging public health issue, particularly in poor and developing countries. Rifampicin (RIF) is one of the most common first-line anti-TB drugs but it is known for its adverse effects on the hepato-renal system. The present study investigated the efficacy of morin hydrate (MH) in protecting hepato-renal damage inflicted by RIF in rats. RIF (50 mg/kg), and a combination of RIF (50 mg/kg) and MH (50 mg/kg) were administered orally for 4 weeks in rats. Silymarin (50 mg/kg) was used as a positive control. Increased levels of serological parameters such as AST, ALT, ALP, LDH, GGT, bilirubin, triglyceride, total cholesterol, urea, uric acid, creatinine, TNF-α, IFN-γ, IL-6 along with the decreased level of IL-10, total protein and albumin were used as markers of hepatic and renal injury. Oxidative damage in the tissues was measured by the increase in lipid peroxidation and decline in GSH, SOD and catalase activities. Histopathology of liver slices was used to study hepatic architecture. Four-week RIF treatment produced altered serological parameters with an increase in pro-inflammatory cytokines in serum suggesting hepatotoxicity and nephrotoxicity. The antioxidant status of the liver and kidney (increased lipid peroxidation and decline in GSH, SOD and catalase) was compromised. Cellular damage and necrosis were observed in liver slices. MH supplementation with RIF improved hepato-renal functions by restoring the serum and tissue markers towards normal values. Histological observations authenticated the results. MH supplementation also reduced the production of pro-inflammatory cytokines. Thus, the results revealed that MH provides protection against RIF-induced hepato-renal injury.
Keyphrases
- pulmonary tuberculosis
- mycobacterium tuberculosis
- oxidative stress
- uric acid
- public health
- diabetic rats
- inflammatory response
- drug induced
- metabolic syndrome
- rheumatoid arthritis
- immune response
- dendritic cells
- randomized controlled trial
- gene expression
- clinical trial
- hiv aids
- fatty acid
- signaling pathway
- hepatitis c virus
- high resolution
- endoplasmic reticulum stress
- binding protein
- gestational age
- low density lipoprotein
- high speed
- adverse drug
- atomic force microscopy
- protein protein
- combination therapy