Login / Signup

ELONGATED HYPOCOTYL 5-mediated suppression of melatonin biosynthesis is alleviated by darkness and promotes cotyledon opening.

Lin WangFangfang ZhouXuan LiuHaixia ZhangTianci YanYanzhao SunKun ShiXiaodong ZhengYunpeng ZhuDongqian ShanYixue BaiYan GuoJin Kong
Published in: Journal of experimental botany (2022)
Melatonin (N-acetyl-5-methoxytryptamine) biosynthesis in plants is induced by darkness and high-intensity light; however, the underlying transcriptional mechanisms and upstream signalling pathways are unknown. We identified a dark-induced and highly expressed melatonin synthetase in Arabidopsis thaliana, AtSNAT6, encoding serotonin N-acetyltransferase. We assessed melatonin content and AtSNAT6 expression in mutants lacking key regulators of light/dark signalling. AtCOP1 (CONSTITUTIVE PHOTOMORPHOGENIC 1) and AtHY5 (ELONGATED HYPOCOTYL 5), which control light/dark transition and photomorphogenesis, promoted and suppressed melatonin biosynthesis, respectively. Using EMSA and ChIP-qPCR analysis, we showed that AtHY5 inhibits AtSNAT6 expression directly. An analysis of melatonin content in snat6 hy5 double mutant and AtHY5+AtSNAT6-overexpressing plants confirmed the regulatory function of AtHY5 and AtSNAT6 in melatonin biosynthesis. Exogenous melatonin further inhibited cotyledon opening in hy5 mutant and AtSNAT6-overexpressing seedlings, but partially reversed the promotion of cotyledon opening in AtHY5-overexpressing seedlings and snat6. Additionally, CRISPR/Cas9-mediated mutation of AtSNAT6 increased cotyledon opening in hy5 mutant, and overexpression of AtSNAT6 decreased cotyledon opening in AtHY5-overexpressing seedlings via changing melatonin biosynthesis, confirming that AtHY5 decreased melatonin-mediated inhibition of cotyledon opening. Our data provide new insights into the regulation of melatonin biosynthesis and its function in cotyledon opening.
Keyphrases
  • arabidopsis thaliana
  • high intensity
  • crispr cas
  • transcription factor
  • poor prognosis
  • genome editing
  • cell proliferation
  • high throughput
  • machine learning
  • body composition
  • deep learning
  • heat stress
  • heat shock