Login / Signup

Regulation of Sirtuin-Mediated Protein Deacetylation by Cardioprotective Phytochemicals.

Niria Treviño-SaldañaGerardo J García-Rivas
Published in: Oxidative medicine and cellular longevity (2017)
Modulation of posttranslational modifications (PTMs), such as protein acetylation, is considered a novel therapeutic strategy to combat the development and progression of cardiovascular diseases. Protein hyperacetylation is associated with the development of numerous cardiovascular diseases, including atherosclerosis, hypertension, cardiac hypertrophy, and heart failure. In addition, decreased expression and activity of the deacetylases Sirt1, Sirt3, and Sirt6 have been linked to the development and progression of cardiac dysfunction. Several phytochemicals exert cardioprotective effects by regulating protein acetylation levels. These effects are mainly exerted via activation of Sirt1 and Sirt3 and inhibition of acetyltransferases. Numerous studies support a cardioprotective role for sirtuin activators (e.g., resveratrol), as well as other emerging modulators of protein acetylation, including curcumin, honokiol, oroxilyn A, quercetin, epigallocatechin-3-gallate, bakuchiol, tyrosol, and berberine. Studies also point to a cardioprotective role for various nonaromatic molecules, such as docosahexaenoic acid, alpha-lipoic acid, sulforaphane, and caffeic acid ethanolamide. Here, we review the vast evidence from the bench to the clinical setting for the potential cardioprotective roles of various phytochemicals in the modulation of sirtuin-mediated deacetylation.
Keyphrases