Nanopores Reveal the Stoichiometry of Single Oligoadenylates Produced by Type III CRISPR-Cas.
David Fuentenebro NavasJurre A SteensCarlos de LannoyBen NoordijkMichael PfefferDick de RidderRaymond H J StaalsSonja SchmidPublished in: ACS nano (2024)
Cyclic oligoadenylates (cOAs) are small second messenger molecules produced by the type III CRISPR-Cas system as part of the prokaryotic immune response. The role of cOAs is to allosterically activate downstream effector proteins that induce dormancy or cell death, and thus abort viral spread through the population. Interestingly, different type III systems have been reported to utilize different cOA stoichiometries (with 3 to 6 adenylate monophosphates). However, so far, their characterization has only been possible in bulk and with sophisticated equipment, while a portable assay with single-molecule resolution has been lacking. Here, we demonstrate the label-free detection of single cOA molecules using a simple protein nanopore assay. It sensitively identifies the stoichiometry of individual cOA molecules and their mixtures from synthetic and enzymatic origin. To achieve this, we trained a convolutional neural network (CNN) and validated it with a series of experiments on mono- and polydisperse cOA samples. Ultimately, we determined the stoichiometric composition of cOAs produced enzymatically by the CRISPR type III-A and III-B variants of Thermus thermophilus and confirmed the results by liquid chromatography-mass spectroscopy (LC-MS). Interestingly, both variants produce cOAs of nearly identical composition (within experimental uncertainties), and we discuss the biological implications of this finding. The presented nanopore-CNN workflow with single cOA resolution can be adapted to many other signaling molecules (including eukaryotic ones), and it may be integrated into portable handheld devices with potential point-of-care applications.
Keyphrases
- type iii
- single molecule
- crispr cas
- convolutional neural network
- genome editing
- label free
- fatty acid
- cell death
- living cells
- genome wide
- immune response
- atomic force microscopy
- liquid chromatography
- copy number
- high throughput
- deep learning
- mass spectrometry
- sars cov
- risk assessment
- amino acid
- dna methylation
- single cell
- small molecule
- regulatory t cells
- hydrogen peroxide
- human health
- low cost
- cell cycle arrest
- tandem mass spectrometry
- dendritic cells
- ionic liquid
- sensitive detection
- inflammatory response
- high resolution mass spectrometry
- protein protein
- binding protein
- quantum dots
- pi k akt