Login / Signup

Bioprocessing of shrimp wastes to obtain chitosan and its antimicrobial potential in the context of ethanolic fermentation against bacterial contamination.

Isabella C TanganiniLigianne Din ShirahigueMariana Altenhofen da SilvaKelly R FranciscoSandra Regina Ceccato-Antonini
Published in: 3 Biotech (2020)
This study investigated the bioprocessing of shrimp wastes to obtain chitin and its deacetylated product chitosan by a fermentation process mediated by Lactobacillus plantarum. The concentrations of glucose, bacterial inoculum, and shrimp wastes in the Man, Rogosa and Sharpe medium were optimized for the fermentation process performed in shake flasks to achieve the maximum titratable acidity to obtain chitin. The experiments were scaled up in a 700-mL working volume bioreactor, and the resulting chitin was deacetylated by the autoclave method. The bioextracted chitosan was characterized (Fourier transform infrared spectroscopy [FTIR], deacetylation degree, and molecular weight) and evaluated for its antimicrobial effects by comparing it with a commercial chitosan sample in the context of the ethanolic fermentation process for fuel alcohol production. The effect of chitosan on such a fermentation process has not been determined yet. The bacterial contaminant Lactobacillus fermentum and the main agent of ethanolic fermentation Saccharomyces cerevisiae were cultured in semi-synthetic medium and co-cultured in sugarcane juice to verify the effect of chitosan on their growth. The bioextracted chitosan (molecular weight 4.0 × 105 g mol-1 and deacetylation degree 80%) was comparable to commercial chitosan, although higher concentrations of the former were required to achieve similar antimicrobial activities. Both commercial and bioextracted chitosan samples exhibited antimicrobial activity against S. cerevisiae and L. fermentum, but the concentration that caused the inhibition of yeast growth was almost tenfold higher than for the bacterium. Moreover, bioextracted chitosan showed no yeast inhibition or lethality in the range of 0.0075-0.96% while for the bacterium, growth inhibition occurred in concentrations varying from 0.24 to 0.48% and lethality of more than 99% at 0.96%. These results indicate the potential use of chitosan and especially of bioextracted chitosan in the bioethanol industry as a safer and more natural approach to combat unwanted bacterial contamination.
Keyphrases