Login / Signup

Reproducing human and cross-species drug toxicities using a Liver-Chip.

Kyung-Jin JangMonicah A OtienoJaney RonxhiHeng-Keang LimLorna EwartKonstantia R KodellaDebora B PetropolisGauri KulkarniJonathan Eric RubinsDavid ConeglianoJanna C NawrothDamir SimicWing LamMonica SingerErio BaraleBhanu SinghManisha SoneeAnthony J StreeterCarl MantheyBarry JonesAbhishek SrivastavaLinda C AnderssonDominic P WilliamsHyoungshin ParkRiccardo BarrileJosiah SlizAnna HerlandSuzzette HaneyKatia KaralisDonald E Ingber
Published in: Science translational medicine (2020)
Nonclinical rodent and nonrodent toxicity models used to support clinical trials of candidate drugs may produce discordant results or fail to predict complications in humans, contributing to drug failures in the clinic. Here, we applied microengineered Organs-on-Chips technology to design a rat, dog, and human Liver-Chip containing species-specific primary hepatocytes interfaced with liver sinusoidal endothelial cells, with or without Kupffer cells and hepatic stellate cells, cultured under physiological fluid flow. The Liver-Chip detected diverse phenotypes of liver toxicity, including hepatocellular injury, steatosis, cholestasis, and fibrosis, and species-specific toxicities when treated with tool compounds. A multispecies Liver-Chip may provide a useful platform for prediction of liver toxicity and inform human relevance of liver toxicities detected in animal studies to better determine safety and human risk.
Keyphrases