Login / Signup

Antipsychotics inhibit the mitochondrial bioenergetics of pancreatic beta cells isolated from CD1 mice.

Ekramy Mahmoud ElmorsyWalla AlelwaniShahad KattanNouf BabteenAfnan AlnajeebiJihan GhulamSoad Mosad
Published in: Basic & clinical pharmacology & toxicology (2020)
Antipsychotics (APs) are widely used medications with reported diabetogenic side effects. This study investigated the effect of commonly used APs, namely chlorpromazine (CPZ), haloperidol (HAL) and clozapine, on the bioenergetics of male CD1 mice isolated pancreatic beta cells as an underlying mechanism of their diabetogenic effects. The effect of APs on Alamar blue reduction, adenosine triphosphate (ATP) production and glucose-stimulated insulin secretion (GSIS) of isolated beta cells was evaluated. Then, the effects of APs on the activities of mitochondrial complexes and their common coding genes expression, oxygen consumption rate (OCR), mitochondrial membrane potential (MMP) and lactate production were investigated. The effects of APs on the mitochondrial membrane fluidity (MMF) and mitochondrial membrane fatty acid composition were also examined. Results showed that the tested APs significantly decreased cellular ATP production and GSIS of the beta cells. The APs significantly inhibited the activities of mitochondrial complexes and their coding gene expression, MMP and OCR of the treated cells, with a parallel increase in lactate production to different extents with the different APs. CPZ and HAL showed increased MMF and mitochondrial membrane polyunsaturated fatty acid content. In conclusion, the tested APs-induced mitochondrial disruption can play a role in their diabetogenic side effect.
Keyphrases