A transcriptome-informed QSP model of metastatic triple-negative breast cancer identifies predictive biomarkers for PD-1 inhibition.
Theinmozhi ArulrajHanwen WangLeisha A EmensCesar A Santa-MariaAleksander S PopelPublished in: Science advances (2023)
Triple-negative breast cancer (TNBC), a highly metastatic breast cancer subtype, has limited treatment options. While a small number of patients attain clinical benefit with single-agent checkpoint inhibitors, identifying these patients before the therapy remains challenging. Here, we developed a transcriptome-informed quantitative systems pharmacology model of metastatic TNBC by integrating heterogenous metastatic tumors. In silico clinical trial with an anti-PD-1 drug, pembrolizumab, predicted that several features, such as the density of antigen-presenting cells, the fraction of cytotoxic T cells in lymph nodes, and the richness of cancer clones in tumors, could serve individually as biomarkers but had a higher predictive power as combinations of two biomarkers. We showed that PD-1 inhibition neither consistently enhanced all antitumorigenic factors nor suppressed all protumorigenic factors but ultimately reduced the tumor carrying capacity. Collectively, our predictions suggest several candidate biomarkers that might effectively predict the response to pembrolizumab monotherapy and potential therapeutic targets to develop treatment strategies for metastatic TNBC.
Keyphrases
- end stage renal disease
- squamous cell carcinoma
- small cell lung cancer
- clinical trial
- lymph node
- newly diagnosed
- chronic kidney disease
- ejection fraction
- gene expression
- genome wide
- metastatic breast cancer
- prognostic factors
- rna seq
- randomized controlled trial
- single cell
- peritoneal dialysis
- emergency department
- early stage
- dna damage
- mesenchymal stem cells
- case report
- mass spectrometry
- endoplasmic reticulum stress
- sentinel lymph node