Login / Signup

Rapid Simultaneous Determination of Cascade Metabolites of Acrylamide in Urine for Toxicokinetics Profiles and Short-Term Dietary Internal Exposure.

Yiju ZhangQiao WangWei JiaJun ChengLi ZhuYiping RenYu Zhang
Published in: Journal of agricultural and food chemistry (2020)
The current study developed an ultrahigh-performance liquid chromatography tandem mass spectrometry method to simultaneously analyze cascade metabolites of acrylamide in urine of rats and humans, including acrylamide, glycidamide, N-acetyl-S-(2-carbamoylethyl)-l-cysteine (AAMA), N-acetyl-S-(2-carbamoylethyl)-l-cysteine-sulfoxide, N-acetyl-S-(2-carbamoyl-2-hydroxyethyl)-l-cysteine, and N-acetyl-S-(1-carbamoyl-2-hydroxyethyl)-l-cysteine. A tandem solid-phase extraction procedure was novelly used to purify all metabolites at once from human urine. The rapid analysis showed high sensitivity with LOD and LOQ ranges of 0.1-0.8 and 0.4-5.8 ng/mL, respectively, and achieved acceptable within-laboratory reproducibility (RSD < 12.0%) and spiking recovery (92.2%-117.3%) within 8 min per sample. Approximately 70.7 and 63.0% of ingested acrylamide were recovered during the toxicokinetics analysis from urine of male and female rats, respectively. For nonsmoking participants, the urinary levels of acrylamide and glycidamide were higher in men than women, whereas the urinary concentration of AAMA showed the opposite behavior. The current analysis provides methodological support of cascade metabolites of acrylamide for the dietary short-term internal exposure assessment of acrylamide.
Keyphrases