Login / Signup

Delivery of Sesamol Using Polyethylene-Glycol-Functionalized Selenium Nanoparticles in Human Liver Cells in Culture.

Fuguo LiuHua LiuRunhua LiuChunxia XiaoXiang DuanDavid Julian McClementsXuebo Liu
Published in: Journal of agricultural and food chemistry (2019)
Anticancer nanoparticles were fabricated by linking the nanoparticles of two known anticancer agents, sesamol and selenium, using polyethylene glycol (PEG). The successful fabrication of the sesamol-PEG-selenium nanoparticles (PEG-SeNPs), which had a sesamol loading efficiency of 10.0 ± 0.5 wt %, was demonstrated using different spectroscopic techniques. The impact of the nanoparticles on model cancer cells (HepG2) was established using the cell activity test, morphological observation, and fluorescent staining, which all showed that nanoparticles effectively inhibited the HepG2 cells. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays showed that the concentration of the sample that inhibits 50% of the cells of PEG-SeNPs and sesamol-PEG-SeNPs on HepG2 cells was 413.8 and 68.7 μg/mL, respectively, which indicated the synergistic inhibition between sesamol and selenium nanoparticles. Furthermore, flow cytometry showed that sesamol-PEG-SeNPs exhibited higher apoptosis than either sesamol or PEG-SeNPs alone. Finally, western blot confirmed that the apoptostic ability of sesamol-PEG-SeNPs was associated with downregulation of Bcl-2 and procaspase-3, upregulation of Bax and PARP, and discharge of cytochrome c into the cytosol. Our findings suggest the novel sesamol nanoparticles may be efficient anticancer agents.
Keyphrases