Login / Signup

Molecular Characterization of WRKY Transcription Factors That Act as Negative Regulators of O-Methylated Catechin Biosynthesis in Tea Plants ( Camellia sinensis L.).

Yong LuoShuangshuang YuJuan LiQin LiKunbo WangJianan HuangZhonghua Liu
Published in: Journal of agricultural and food chemistry (2018)
Tea O-methylated catechins, especially (-)-epigallocatechin 3- O-(3- O-methyl)gallate (EGCG3″Me), have been attracting much attention as a result of their positive health effects. The transcription regulators of O-methylated catechin biosynthesis remain elusive. In this study, the expression pattern of genes related to O-methylated catechin biosynthesis, including CsLAR, CsANS, CsDFR, CsANR, and CCoAOMT, in three tea cultivars with different contents of EGCG3″Me was investigated. Two WRKY transcription factors (TFs), designated as CsWRKY31 and CsWRKY48, belonging to groups IIb and IIc of the WRKY family, respectively, were further identified. CsWRKY31 and CsWRKY48 were nuclear-localized proteins and possessed transcriptional repression ability. Furthermore, expression of CsWRKY31 and CsWRKY48 showed negative correlation with CsLAR, CsDFR, and CCoAOMT during EGCG3″Me accumulation in tea leaves. More importantly, W-box (C/T)TGAC(T/C) elements were located in the promoter of CsLAR, CsDFR, and CCoAOMT, and further assays revealed that CsWRKY31 and CsWRKY48 were capable of repressing the transcription of CsLAR, CsDFR, and CCoAOMT via the attachment of their promoters to the W-box elements. Collectively, our findings identify two novel negative regulators of O-methylated catechin biosynthesis in tea plants, which might provide a potential strategy to breed high-quality tea cultivar.
Keyphrases
  • transcription factor
  • genome wide identification
  • dna binding
  • poor prognosis
  • cell wall
  • binding protein
  • working memory
  • gene expression
  • risk assessment
  • climate change
  • heat stress
  • heat shock
  • genome wide analysis