Neuropilin-1 modulates interferon-γ-stimulated signaling in brain microvascular endothelial cells.
Ying WangYing CaoAshutosh K MangalamYong GuoReghann G LaFrance-CoreyJeffrey D GamezPascal Aliihnui AtangaBenjamin D ClarksonYuebo ZhangEnfeng WangRamcharan Singh AngomKirthica DuttaBaoan JiIstvan PirkoClaudia F LucchinettiCharles L HoweDebabrata MukhopadhyayPublished in: Journal of cell science (2016)
Inflammatory response of blood-brain barrier (BBB) endothelial cells plays an important role in pathogenesis of many central nervous system inflammatory diseases, including multiple sclerosis; however, the molecular mechanism mediating BBB endothelial cell inflammatory response remains unclear. In this study, we first observed that knockdown of neuropilin-1 (NRP1), a co-receptor of several structurally diverse ligands, suppressed interferon-γ (IFNγ)-induced C-X-C motif chemokine 10 expression and activation of STAT1 in brain microvascular endothelial cells in a Rac1-dependent manner. Moreover, endothelial-specific NRP1-knockout mice, VECadherin-Cre-ERT2/NRP1flox/flox mice, showed attenuated disease progression during experimental autoimmune encephalomyelitis, a mouse neuroinflammatory disease model. Detailed analysis utilizing histological staining, quantitative PCR, flow cytometry and magnetic resonance imaging demonstrated that deletion of endothelial NRP1 suppressed neuron demyelination, altered lymphocyte infiltration, preserved BBB function and decreased activation of the STAT1-CXCL10 pathway. Furthermore, increased expression of NRP1 was observed in endothelial cells of acute multiple sclerosis lesions. Our data identify a new molecular mechanism of brain microvascular endothelial inflammatory response through NRP1-IFNγ crosstalk that could be a potential target for intervention of endothelial cell dysfunction in neuroinflammatory diseases.
Keyphrases
- endothelial cells
- blood brain barrier
- inflammatory response
- high glucose
- multiple sclerosis
- cerebral ischemia
- white matter
- flow cytometry
- dendritic cells
- lipopolysaccharide induced
- magnetic resonance imaging
- poor prognosis
- lps induced
- vascular endothelial growth factor
- resting state
- toll like receptor
- immune response
- oxidative stress
- cell proliferation
- randomized controlled trial
- binding protein
- drug induced
- liver failure
- high resolution
- functional connectivity
- brain injury
- intensive care unit
- hepatitis b virus
- long non coding rna
- mass spectrometry
- artificial intelligence
- diabetic rats
- acute respiratory distress syndrome
- respiratory failure
- type diabetes