Login / Signup

Design, Synthesis, and Biological Evaluation of Novel DNA Gyrase-Inhibiting Spiropyrimidinetriones as Potent Antibiotics for Treatment of Infections Caused by Multidrug-Resistant Gram-Positive Bacteria.

Chenghui ShiYinyong ZhangTing WangWenchao LuShuhua ZhangBin GuoQian ChenCheng LuoXianli ZhouYushe Yang
Published in: Journal of medicinal chemistry (2019)
Spiropyrimidinetriones are a novel class of antibacterial agents that target the bacterial type II topoisomerase via a new mode of action. Compound ETX0914 is thus far the only drug from this class that is being evaluated in clinical trials. To improve the antibacterial activity and pharmacokinetic properties of ETX0914, we carried out systematic structural modification of this compound, and a number of compounds with increased potency were obtained. The most promising compound 33e, with incorporation of a spirocyclopropane at the oxazolidinone 5 position reduced metabolism, exhibited excellent antibacterial activity against Gram-positive pathogens and a good pharmacokinetic profile combined with high aqueous solubility. In addition, compound 33e exhibited good selectivity for Staphylococcus aureus gyrase over human Topo IIα. In a murine model of systemic methicillin-resistant S. aureus infection, 33e exhibited superior in vivo efficacy (ED50 = 3.87 mg/kg) compared to ETX0914 (ED50 = 11.51 mg/kg).
Keyphrases