Near-Infrared Phototheranostic Iron Pyrite Nanocrystals Simultaneously Induce Dual Cell Death Pathways via Enhanced Fenton Reactions in Triple-Negative Breast Cancer.
Chunhua ZhaoZekun LiuChia-Che ChangYi-Chia ChenQize ZhangXiao-Dong ZhangChrysafis AndreouJiadong PangZe-Xian LiuDi-Yan WangMoritz F KircherJiang YangPublished in: ACS nano (2023)
Triple-negative breast cancer (TNBC) is considered more aggressive with a poorer prognosis than other breast cancer subtypes. Through systemic bioinformatic analyses, we established the ferroptosis potential index (FPI) based on the expression profile of ferroptosis regulatory genes and found that TNBC has a higher FPI than non-TNBC in human BC cell lines and tumor tissues. To exploit this finding for potential patient stratification, we developed biologically amenable phototheranostic iron pyrite FeS 2 nanocrystals (NCs) that efficiently harness near-infrared (NIR) light, as in photovoltaics, for multispectral optoacoustic tomography (MSOT) and photothermal ablation with a high photothermal conversion efficiency (PCE) of 63.1%. Upon NIR irradiation that thermodynamically enhances Fenton reactions, dual death pathways of apoptosis and ferroptosis are simultaneously triggered in TNBC cells, comprehensively limiting primary and metastatic TNBC by regulating p53, FoxO, and HIF-1 signaling pathways and attenuating a series of metabolic processes, including glutathione and amino acids. As a unitary phototheranostic agent with a safe toxicological profile, the nanocrystal represents an effective way to circumvent the lack of therapeutic targets and the propensity of multisite metastatic progression in TNBC in a streamlined workflow of cancer management with an integrated image-guided intervention.
Keyphrases
- cell death
- cell cycle arrest
- photodynamic therapy
- drug release
- signaling pathway
- squamous cell carcinoma
- pi k akt
- endothelial cells
- induced apoptosis
- fluorescence imaging
- small cell lung cancer
- randomized controlled trial
- wastewater treatment
- drug delivery
- transcription factor
- hydrogen peroxide
- room temperature
- amino acid
- endoplasmic reticulum stress
- cancer therapy
- gene expression
- oxidative stress
- human health
- epithelial mesenchymal transition
- climate change
- energy transfer
- electronic health record
- papillary thyroid
- radiation induced
- atrial fibrillation
- young adults
- genome wide identification
- dna methylation
- pluripotent stem cells
- quantum dots
- genome wide analysis