Dietary starch to lipid ratios influence growth performance, nutrient utilisation and carcass traits in broiler chickens offered diets with different energy densities.
Ali KhoddamiPeter V ChrystalPeter H SelleSonia Yun LiuPublished in: PloS one (2018)
Twelve experimental diets with three levels of energy densities (11.25, 12.38 and 13.50 MJ/kg) and fours levels of starch to lipid ratios (14:1, 12:1, 7:1, 4:1) were offered to 288 male Ross 308 broiler chickens. All the diets were formulated to contain consistent digestible lysine to metabolisable energy ratios (0.87 g digestible lysine/MJ AMEn) and ideal amino acid ratios. Growth performance was monitored from 7 to 27 days post-hatch and parameters of nutrient utilisation (AME, AMEn, AME:GE ratios, N retention) were determined from 24 to 26 days post-hatch. Apparent protein (N) and starch digestibility coefficients, carcass yield and composition were determined at 27 days post-hatch. There were no interactions between energy densities and starch to lipid ratios on growth performance and carcass weights (P > 0.05). Feed intake was reduced with increased energy densities (P < 0.001). Weight gain and FCR were improved with increased dietary energy densities (P < 0.0001). Starch to lipid ratios linearly increased weight gain (r = 0.448, P = 0.001) and feed intake (r = 0.509, P < 0.001) without influencing FCR (P > 0.75). Both nutrient densities and starch to lipid ratios significantly impacted on carcass weight and yield. Heavier carcass weights and higher yields were observed in broiler chickens offered diets with high nutrient density (P ≤ 0.001). Carcass weight (r = 0.441, P < 0.005) was positively correlated with starch to lipid ratios and this tended to be the case for carcass yield (r = 0.277, P = 0.057) too. However, there were interactions on lipid concentrations in carcass (P < 0.001) as broiler chickens offered diet containing the lowest nutrient density and the highest starch to lipid ratio had the highest lipid carcass concentration of 12.94%. In conclusion, protein and energy need to be considered in tandem in practical diet formulation, especially in diets containing high crystalline amino acid inclusions. The impact of lipid on feed intake and starch on carcass lipid concentrations should also be taken into consideration.