Login / Signup

scREMOTE: Using multimodal single cell data to predict regulatory gene relationships and to build a computational cell reprogramming model.

Andy TranPengyi YangJean Yee Hwa YangJohn T Ormerod
Published in: NAR genomics and bioinformatics (2022)
Cell reprogramming offers a potential treatment to many diseases, by regenerating specialized somatic cells. Despite decades of research, discovering the transcription factors that promote cell reprogramming has largely been accomplished through trial and error, a time-consuming and costly method. A computational model for cell reprogramming, however, could guide the hypothesis formulation and experimental validation, to efficiently utilize time and resources. Current methods often cannot account for the heterogeneity observed in cell reprogramming, or they only make short-term predictions, without modelling the entire reprogramming process. Here, we present scREMOTE, a novel computational model for cell reprogramming that leverages single cell multiomics data, enabling a more holistic view of the regulatory mechanisms at cellular resolution. This is achieved by first identifying the regulatory potential of each transcription factor and gene to uncover regulatory relationships, then a regression model is built to estimate the effect of transcription factor perturbations. We show that scREMOTE successfully predicts the long-term effect of overexpressing two key transcription factors in hair follicle development by capturing higher-order gene regulations. Together, this demonstrates that integrating the multimodal processes governing gene regulation creates a more accurate model for cell reprogramming with significant potential to accelerate research in regenerative medicine.
Keyphrases