Probing the Interaction of Aspergillomarasmine A with Metallo-β-lactamases NDM-1, VIM-2, and IMP-7.
Alexander BergstromAndrew KatkoZach AdkinsJessica HillZishuo ChengMia BurnettHao YangMahesh AithaM Rachel MehaffeyJennifer S BrodbeltKamaleddin H M E TehraniNathaniel I MartinRobert A BonomoRichard C PageDavid L TierneyWalter FastGerard D WrightMichael W CrowderPublished in: ACS infectious diseases (2017)
Metallo-β-lactamases (MBLs) are a growing threat to the continued efficacy of β-lactam antibiotics. Recently, aspergillomarasmine A (AMA) was identified as an MBL inhibitor, but the mode of inhibition was not fully characterized. Equilibrium dialysis and metal analysis studies revealed that 2 equiv of AMA effectively removes 1 equiv of Zn(II) from MBLs NDM-1, VIM-2, and IMP-7 when the MBL is at micromolar concentrations. Conversely, 1H NMR studies revealed that 2 equiv of AMA remove 2 equiv of Co(II) from Co(II)-substituted NDM-1, VIM-2, and IMP-7 when the MBL/AMA are at millimolar concentrations. Our findings reveal that AMA inhibits the MBLs by removal of the active site metal ions required for β-lactam hydrolysis among the most clinically significant MBLs.