Diarylidenylpiperidones, H-4073 and HO-3867, Induce G2/M Cell-Cycle Arrest, Apoptosis and Inhibit STAT3 Phosphorylation in Human Pancreatic Cancer Cells.
Jesse M MastDan TseKevin SheeM Lakshmi KuppusamyMaciej M KmiecTamás KálaiPeriannan KuppusamyPublished in: Cell biochemistry and biophysics (2019)
Pancreatic cancer has a 5-year survival rate below 10% and the treatment options are limited. Signal transducer and activator of transcription (STAT3) is a constitutively expressed protein in human pancreatic cancers and is associated with their poor prognosis. Targeting of STAT3 signaling using novel therapeutic agents is a potential strategy for pancreatic cancer treatment. Diarylidenylpiperidone (DAP) compounds, such as H-4073 and HO-3867, have been shown to be STAT3 inhibitors in several human ovarian cancers. Particularly, HO-3867 is an N-hydroxypyrroline derivative of DAP that has targeted cytotoxicity toward cancer cells without affecting healthy cells. In the present study, we evaluated the anticancer efficacy of H-4073 and HO-3867 in a human pancreatic cell line (AsPC-1). We found that both the compounds exhibited potential cytotoxicity to AsPC-1 cells by inducing G2/M cell-cycle arrest, apoptosis, and cell death, by mitochondrial damage and inhibition of STAT3 phosphorylation. In summary, H-4073 and HO-3867 are cytotoxic to AsPC-1 cells and seem to act through similar mechanisms, including STAT3 inhibition, cell-cycle arrest, and apoptosis.
Keyphrases
- cell cycle arrest
- cell death
- pi k akt
- cell proliferation
- endothelial cells
- signaling pathway
- poor prognosis
- induced pluripotent stem cells
- oxidative stress
- pluripotent stem cells
- long non coding rna
- cancer therapy
- protein protein
- transcription factor
- young adults
- toll like receptor
- drug delivery
- water soluble
- childhood cancer