Login / Signup

Evaluation of a Fecal Shedding Test To Detect Badger Social Groups Infected with Mycobacterium bovis.

Andrew R J MurphyEmma R TravisVictoria HibberdDavid PorterElizabeth M H Wellington
Published in: Journal of clinical microbiology (2020)
Bovine tuberculosis (bTB) is an economically important disease affecting the cattle industry in England and Wales. bTB, caused by Mycobacterium bovis, also causes disease in the Eurasian badger (Meles meles), a secondary maintenance host. Disease transmission between these two species is bidirectional. Infected badgers shed M. bovis in their feces. The Animal and Plant Health Agency (APHA) of the United Kingdom organized a comparative trial to determine the performance of tests in detecting M. bovis in badger feces for the Department for Environment, Food, and Rural Affairs (DEFRA). Here, we assessed the performance of the existing Warwick Fast24-qPCR test and its modified version based on a high-throughput DNA extraction method (Fast96-qPCR). We found Fast24-qPCR to have a sensitivity of 96.7% (95% confidence interval [CI], 94.5 to 99%; n = 244) and a specificity of 99% (95% CI, 97.8 to 100%; n = 292). Fast96-qPCR requires further optimization. Determining the disease status of badger social groups requires multiple tests per group. Therefore, to increase specificity further, we independently repeated the Fast24-qPCR test on positive samples, increasing stringency by requiring a second positive result. Fast24-qPCR with repeat testing had a sensitivity of 87.3% (95% CI, 83.1 to 91.5%; n = 244), and a specificity of 100% (95% CI, 100 to 100; n = 201) on an individual-sample level. At the social-group level, this repeat testing gives Fast24-qPCR high herd specificity, while testing multiple samples per group provides high herd sensitivity. With Fast24-qPCR, we provide a social-group-level test with sufficient specificity and sensitivity to monitor shedding in badgers via latrine sampling, delivering a potentially valuable tool to measure the impacts of bTB control measures.
Keyphrases