Rare sudden unexpected death in epilepsy SCN5A variants cause changes in channel function implicating cardiac arrhythmia as a cause of death.
Ming Shiuan SohRichard D BagnallChristopher SemsarianIngrid Eileen SchefferSamuel Frank BerkovicChristopher A ReidPublished in: Epilepsia (2022)
Sudden unexpected death in epilepsy (SUDEP) is a leading cause of premature death in epilepsy. The underlying pathological mechanisms are likely to be multifactorial. Cardiac arrhythmia has been suggested as a cause of death in some patients with SUDEP. SCN5A encodes the cardiac Na v 1.5 sodium channel. SCN5A variants that result in either loss or gain of channel function cause cardiac arrhythmias. Rare SCN5A variants have been reported in SUDEP cases, but the impact of these variants on channel function is unknown. Here, we use whole-cell voltage clamp recordings to perform functional analyses of rare SCN5A SUDEP variants, p.V223G, p.I397V, and p.R523C. Expression and biophysical properties, including activation, inactivation, and recovery from inactivation, were probed. Each SCN5A variant significantly impacted human Na V 1.5 channel function, indicating that they could cause cardiac arrhythmias. The patient carrying the p.R523C variant was on lamotrigine, an antiseizure medication implicated in SUDEP. Therapeutic concentration of lamotrigine caused a slowing of the rate of recovery from inactivation and a hyperpolarizing shift in the voltage of inactivation of human Na V 1.5 wild-type, but not p.R523C channels, implicating a gene-by-drug interaction. These data suggest that SCN5A arrhythmogenic variants may confer increased risk of sudden death in individuals with epilepsy.