Development, Characterization, and Evaluation as Food Active Packaging of Low-Density-Polyethylene-Based Films Incorporated with Rich in Thymol Halloysite Nanohybrid for Fresh "Scaloppini" Type Pork Meat Fillets Preservation.
Aris E GiannakasConstantinos E SalmasDimitrios MoschovasVassilios K KarabagiasIoannis Konstantinos KarabagiasMaria BaikousiStavros GeorgopoulosAreti A LeontiouKaterina KaterinopoulouNikolaos Evangelos ZafeiropoulosApostolos AvgeropoulosPublished in: Polymers (2023)
A new era is rising in food packaging and preservation, with a consequent focus on transition to "greener" and environmentally friendly techniques. The environmental problems that are emerging nowadays impose use of natural materials for food packaging applications, replacement of chemical preservatives with natural organic extractions, such as essential oils, and targeting of new achievements, such as further extension of food shelf-life. According to this new philosophy, most of the used materials for food packaging should be recyclable, natural or bio-based, and/or edible. The aim of this work was to investigate use and efficiency of a novel food packaging developed based on commercial LDPE polymer incorporated with natural material halloysite impregnated with natural extract of thyme oil. Moreover, a direct correlation between the stiff TBARS method and the easiest heme iron measurements method was scanned to test food lesions easier and faster. The result of this study was development of the LDPE/10TO@HNT film, which contains the optimum amount of a hybrid nanostructure and is capable to be used as an efficient active food packaging film. Furthermore, a linear correlation seems to connect the TBARS and heme iron measurements.