Login / Signup

The Promise and Perils of Artificial Intelligence in Health Professions Education Practice and Scholarship.

Gustavo A PatinoJonathan M AmielMegan Elizabeth Lincoln BrownMonica L LypsonTeresa M Chan
Published in: Academic medicine : journal of the Association of American Medical Colleges (2024)
Artificial intelligence (AI) methods, especially machine learning and natural language processing, are increasingly affecting health professions education (HPE), including the medical school application and selection processes, assessment, and scholarship production. The rise of large language models over the past 18 months, such as ChatGPT, has raised questions about how best to incorporate these methods into HPE. The lack of training in AI among most HPE faculty and scholars poses an important challenge in facilitating such discussions. In this commentary, the authors provide a primer on the AI methods most often used in the practice and scholarship of HPE, discuss the most pressing challenges and opportunities these tools afford, and underscore that these methods should be understood as part of the larger set of statistical tools available.Despite their ability to process huge amounts of data and their high performance completing some tasks, AI methods are only as good as the data on which they are trained. Of particular importance is that these models can perpetuate the biases that are present in those training datasets, and they can be applied in a biased manner by human users. A minimum set of expectations for the application of AI methods in HPE practice and scholarship are discussed in this commentary, including the interpretability of the models developed and the transparency needed into the use and characteristics of such methods.
Keyphrases