Login / Signup

EROS is a selective chaperone regulating the phagocyte NADPH oxidase and purinergic signalling.

Lyra O RandzavolaPaige M MortimerEmma GarsideElisabeth R DufficyAndrea SchejtmanGeorgia RoumeliotiLu YuMercedes PardoKerstin SpirohnCharlotte TolleyCordelia BrandtKatherine HarcourtEsme NicholsMike NahorskiGeoff WoodsJames C WilliamsonShreehari SureshJohn M SowerbyMisaki MatsumotoCelio X C SantosCher Shen KiarSubhankar MukhopadhyayWill M RaeGordon J DouganJohn GraingerPaul J LehnerMichael A CalderwoodJyoti ChoudharySimon ClareAnneliese SpeakGiorgia SantilliAlex BatemanKenneth G C SmithFrancesca MagnaniDavid C Thomas
Published in: eLife (2022)
EROS (Essential for Reactive Oxygen Species) protein is indispensable for expression of gp91 phox , the catalytic core of the phagocyte NADPH oxidase. EROS deficiency in humans is a novel cause of the severe immunodeficiency, chronic granulomatous disease (CGD), but its mechanism of action was unknown until now. We elucidate the role of EROS, showing it acts at the earliest stages of gp91 phox maturation. It binds the immature 58kDa gp91 phox directly, preventing gp91 phox degradation and allowing glycosylation via the oligosaccharyltransferase (OST) machinery and the incorporation of the heme prosthetic groups essential for catalysis. EROS also regulates the purine receptors P2X7 and P2X1 through direct interactions and P2X7 is almost absent in EROS deficient mouse and human primary cells. Accordingly, lack of murine EROS results in markedly abnormal P2X7 signalling, inflammasome activation and T cell responses. The loss of both ROS and P2X7 signalling leads to resistance to influenza infection in mice. Our work identifies EROS as a highly selective chaperone for key proteins in innate and adaptive immunity and a rheostat for immunity to infection. It has profound implications for our understanding of immune physiology, ROS dysregulation and possibly gene therapy.
Keyphrases