Targeted Lipidomics Reveal the Effects of Different Phospholipids on the Phospholipid Profiles of Hepatic Mitochondria and Endoplasmic Reticulum in High-Fat/High-Fructose-Diet-Induced Nonalcoholic Fatty Liver Disease Mice.
Ling-Yu ZhangHao-Hao ShiCheng-Cheng WangYu-Ming WangZi-Hao WeiChang-Hu XueXiang-Zhao MaoTian-Tian ZhangPublished in: Journal of agricultural and food chemistry (2022)
The lipid alternation in mitochondria and endoplasmic reticulum (ER) might be indicative of their abnormal morphology and function, which contribute to development of nonalcoholic fatty liver disease (NAFLD). However, the influence of dietary phospholipids (PLs) on the PL composition of the organellar membrane is largely unknown. High-fat/high-fructose (HFHF)-diet-induced NAFLD mice were administrated with different PLs (2%, w/w) with specific fatty acids and headgroups, including eicosapentaenoic acid (EPA)-phosphatidylcholine (PC)/phosphatidylethanolamine (PE)/phosphatidylserine (PS), docosahexaenoic acid (DHA)-PC/PE/PS, egg-PC/PE/PS, and soy-PC/PE/PS. After 8 weeks of feeding, PLs dramatically decreased hepatic lipid accumulation, in which EPA/DHA-PS had the best efficiency. Furthermore, lipidomic analysis revealed that the HFHF diet narrowed the difference in PL composition between mitochondria and ER, significantly reduced the PC/PE ratio, and changed the unsaturation of cardiolipin in mitochondria. Dietary PLs reversed these alterations. Heatmap analysis indicated that dietary PL groups containing the same fatty acids clustered together. Moreover, dietary PLs significantly increased the ratio of PC/PE in both hepatic mitochondria and ER, especially EPA-PE. This study showed that fatty acid composition of PLs might represent greater impact on the PL composition of the organellar membrane than headgroups.