Login / Signup

A Genomewide Evolution-Based CRISPR/Cas9 with Donor-Free (GEbCD) for Developing Robust and Productive Industrial Yeast.

Jinwei ZhangGuomiao ZhaoWenxin BaiYing ChenYuan ZhangFan LiManyi WangYue ShenYun WangXiaoyan WangChun Li
Published in: ACS synthetic biology (2024)
Developing more robust and productive industrial yeast is crucial for high-efficiency biomanufacturing. However, the challenges posed by the long time required and the low abundance of mutations generated through genomewide evolutionary engineering hinder the development and optimization of desired hosts for industrial applications. To address these issues, we present a novel solution called the Genomewide Evolution-based CRISPR/Cas with Donor-free (GEbCD) system, in which nonhomologous-end-joining (NHEJ) repair can accelerate the acquisition of highly abundant yeast mutants. Together with modified rad52 of the DNA double-strand break repair in Saccharomyces cerevisiae , a hypermutation host was obtained with a 400-fold enhanced mutation ability. Under multiple environmental stresses the system could rapidly generate millions of mutants in a few rounds of iterative evolution. Using high-throughput screening, an industrial S. cerevisiae SISc-Δrad52-G4-72 (G4-72) was obtained that is strongly robust and has higher productivity. G4-72 grew stably and produced ethanol efficiently in multiple-stress environments, e.g. high temperature and high osmosis. In a pilot-scale fermentation with G4-72, the fermentation temperature was elevated by 8 °C and ethanol production was increased by 6.9% under the multiple stresses posed by the industrial fermentation substrate. Overall, the GEbCD system presents a powerful tool to rapidly generate abundant mutants and desired hosts, and offers a novel strategy for optimizing microbial chassis with regard to demands posed in industrial applications.
Keyphrases