Login / Signup

The Enzyme Gene Expression of Protein Utilization and Metabolism by Lactobacillus helveticus CICC 22171.

Huixin ZhangMengfan XuShanhu HuHongfei ZhaoBolin Zhang
Published in: Microorganisms (2022)
The purpose of this study was to explore the hydrolytic ability of Lactobacillus helveticus CICC 22171 with regard to protein and the expression of enzyme genes during protein utilization. The results revealed that the strain hydrolyzed casein from the C-terminal, reached the maximum level in 6 h, and the number of amino acids in the hydrolyzed peptide was 7-33. The molecular weight was 652.4-3432.74 kDa. Hydrophobic peptides produced by hydrolysis were the source of β-casein bitterness. Leucine and glutamine were the preferred cleavage points after 1 h; tyrosine and tryptophan subsequently increased. The first step of hydrolysis was controlled by PrtP and PrtM genes and coordinated with the action of PrtH1 and PrtH2. The transport system consisted of DtpT, OppB, OppD and OppF. The hydrolytic third step endopeptidase system consisted of the aminopeptidases (PepN, PepC, PepM and PepA), the endopeptidases (PepE, PepF and PepO); the dipeptidases (PepV and PepD), the tripeptidase PepT; the proline peptidases (PepX, PepP, PepQ, PepR and PepI). The expression of CEP genes was significantly different, and the expression level of genes related to the transport system significantly increased from 0 to 1 h. The specificity of the substrate and action site of endopeptidase was abundant.
Keyphrases