Login / Signup

A Feasibility Study towards the On-Line Quality Assessment of Pesto Sauce Production by NIR and Chemometrics.

Daniele TanzilliAlessandro D'AlessandroSamuele TamelliCaterina DuranteMarina CocchiLorenzo Strani
Published in: Foods (Basel, Switzerland) (2023)
The food industry needs tools to improve the efficiency of their production processes by minimizing waste, detecting timely potential process issues, as well as reducing the efforts and workforce devoted to laboratory analysis while, at the same time, maintaining high-quality standards of products. This can be achieved by developing on-line monitoring systems and models. The present work presents a feasibility study toward establishing the on-line monitoring of a pesto sauce production process by means of NIR spectroscopy and chemometric tools. The spectra of an intermediate product were acquired on-line and continuously by a NIR probe installed directly on the process line. Principal Component Analysis (PCA) was used both to perform an exploratory data analysis and to build Multivariate Statistical Process Control (MSPC) charts. Moreover, Partial Least Squares (PLS) regression was employed to compute real time prediction models for two different pesto quality parameters, namely, consistency and total lipids content. PCA highlighted some differences related to the origin of basil plants, the main pesto ingredient, such as plant age and supplier. MSPC charts were able to detect production stops/restarts. Finally, it was possible to obtain a rough estimation of the quality of some properties in the early production stage through PLS.
Keyphrases
  • data analysis
  • photodynamic therapy
  • public health
  • quality improvement
  • high resolution
  • fatty acid
  • heavy metals
  • drug release
  • drug delivery
  • molecular dynamics
  • cell wall
  • life cycle
  • gas chromatography mass spectrometry