Screening of a Novel Lactiplantibacillus plantarum MMB-05 and Lacticaseibacillus casei Fermented Sandwich Seaweed Scraps: Chemical Composition, In Vitro Antioxidant, and Volatile Compounds Analysis by GC-IMS.
Tengqi GaoJinling ChenJie XuHan GuPengpeng ZhaoWenbin WangSaikun PanYang TaoHongli WangJie YangPublished in: Foods (Basel, Switzerland) (2022)
Lactic acid fermentation is a promising method for developing sandwich seaweed scraps. The objectives of this study were to investigate the effect of fermentation with Lactiplantibacillus plantarum MMB-05, Lactiplantibacillus casei FJAT-7928, mixed bacteria (1:1, v/v ) and control on the physicochemical indexes, in vitro antioxidant activity, and volatile compounds of Porphyra yezoensis sauce. Sensory evaluation was also performed. The results indicated that all lactic acid bacteria strains grew well in P. yezoensis sauce after 72 h of fermentation, with the viable cell counts of L. plantarum MMB-05 exceeding 10.0 log CFU/mL, the total phenolic content increasing by 16.54%, and the lactic acid content increasing from 0 to 44.38 ± 0.11 mg/mL. Moreover, the metabolism of these strains significantly increased the content of umami, sweet and sour free amino acids in P. yezoensis sauce. The total antioxidant capacity of L. plantarum MMB-05, L. casei FJAT-7928, mix and control groups increased by 594.59%, 386.49%, 410.27%, and 287.62%, respectively. Gas chromatography-ion mobility spectrometry (GC-IMS) analysis suggested that aldehydes and ketones accounted for the largest proportion, and the relative contents of acids and alcohols in P. yezoensis sauce increased significantly after lactic acid bacteria fermentation. In addition, the analysis of dynamic principal component analysis (PCA) and fingerprinting showed that the volatile components of the four treatment methods could be significantly distinguished. Overall, the L. plantarum MMB-05 could be recommended as an appropriate starter for fermentation of sandwich seaweed scraps, which provides a fundamental knowledge for the utilization of sandwiched seaweed scraps.