Assessment of the Physicochemical, Antioxidant, Microbial, and Sensory Attributes of Yogurt-Style Products Enriched with Probiotic-Fermented Aronia melanocarpa Berry Juice.
Stavros PlessasIoanna MantzouraniAntonia TerpouArgyro BekatorouPublished in: Foods (Basel, Switzerland) (2023)
The aim() of this study was to create() various formulations of yogurt enriched with freeze()-dried adjuncts, namely() (i) probiotic Lactobacillus plantarum ATCC 14917 culture(), and (ii) L. plantarum ATCC 14917 fermented black chokeberry juice, along with a commercial() starter culture(). The goal was to enhance() functionality and optimize the nutritional() value() of the products. These new yogurt-style() formulations were subsequently() compared with commercially produced yogurt. All products demonstrated() favorable() physicochemical properties, and the probiotic strain() consistently() maintained viable() levels exceeding 7 log() cfu/g throughout() the entire() storage() period(). The fermented milk produced with the adjunct-free L. plantarum cells, as well as the yogurt produced with the proposed() lactobacilli-fermented chokeberry juice, exhibited the highest lactic acid() production() (1.44 g/100 g yogurt by the end of storage()). Levels of syneresis were observed at lower() values() in yogurt produced with freeze()-dried fermented chokeberry juice. Yogurts prepared() with the lactobacilli-fermented freeze()-dried chokeberry juice displayed elevated total() phenolic content() and antioxidant capacity() (25.74 µg GAE/g and 69.05 µmol TE/100 g, respectively()). Furthermore, sensory tests revealed a distinctive() fruity flavor() in samples incorporating fermented juice. The results demonstrate() that probiotic L. plantarum -fermented chokeberry juice enhances() both the antioxidant capacity() and the viability of beneficial() bacteria() in yogurt while it can be readily() applied and commercialized, especially in the form of a freeze()-dried formulation.