Biochemical Properties Affecting the Nutritional Quality, Safety, and Aroma of Dry-Cured Products Manufactured from Meat of Rare Native Pig Breeds.
Ewelina WęsierskaJoanna Sobolewska-ZielińskaMałgorzata PasternakKatarzyna Niemczyńska-WróbelRobert GąsiorKrzysztof WojtyczaHenryk PustkowiakIwona DudaWładysław MigdałPublished in: Foods (Basel, Switzerland) (2021)
The aim of study was to compare the biochemical properties affecting the nutritional quality, safety, and aroma of dry-cured products manufactured from valuable meat of rare native pig breeds: Pulawska (Pul) and Zlotnicka Spotted (ZS). The count of lactic acid bacteria (4.4 log cfu/g) and the release of palmitic (23.1% and 25.9%), oleic (44.1% and 42.2%), and linoleic acids (8.3% and 7.8%), as well as arginine (30.0 and 44.3 mg/kg), histidine (25.8 and 20.6 mg/kg), and lysine (26.8-22.9 mg/kg), shaped the final pH (5.3 and 5.4) in Pul and ZS products during the 4 week maturing, respectively. Lastly, Pul and ZS meat differed in the proportion of decanoic, lauric, stearic, arachidic, and conjugated linoleic acids. The high content of putrescine (23.7 mg/kg), cadaverine (54.3 mg/kg), and tyramine (57.2 mg/kg), as well as a twofold greater share of histamine (163.2 mg/kg) and tryptamine (9.1 mg/kg), indicated a more advanced decarboxylation of ZS meat. Volatile compounds differentiating Pul and ZS meat were primarily hexanal, 3-hydroxybutan-2-one, phenylacetalaldehyde, 2,3-dimethyl-2-cyclopenten-1-one, 2-cyclopenten-1-one, and 3-methyl- and 2-cyclopenten-1-one. Most marked volatile compounds were obtained as a result of microbial activity (acetic acid, 3-methylbutan-1-ol, ethanol, acetone, and 3-hydroxybutan-2-one), advanced lipid oxidation, and decomposition of secondary oxidation products (hexanal, phenylacetaldehyde, and 2-cyclopenten-1-one).