Login / Signup

Novel alternative for controlling enzymatic browning: Catalase and its application in fresh-cut potatoes.

Liping QiaoXinyu HanHailin WangMan GaoJinhu TianLaifeng LuXia Liu
Published in: Journal of food science (2021)
Surface browning is a vital phenomenon that adversely reduces the quality of fresh-cut potatoes. Although many anti-browning methods have been explored, it is unclear whether exogenous catalase (CAT) treatment influences the enzymatic browning. Our results showed that 0.05% CAT immersion for 5 min alleviated browning during cold storage (4°C, 8 days), which was accompanied by a higher lightness and lower redness; additionally, lower H2 O2 and O2 ·- contents were found. The activities of CAT, ascorbate peroxidase, and glutathione peroxidase and the scavenging efficiency of 2,2-diphenyl-1-picrylhydrazyl were also increased. Moreover, CAT treatment inhibited the activities of polyphenol oxidase, peroxidase, and phenylalanine ammonia lyase and reduced phenol accumulation. Treatment with 0.1% hydrogen peroxide (H2 O2 ) achieved the opposite results. This is the first report of CAT application reducing fresh-cut potato browning, providing a safe treatment alternative for enzymatic discoloration and preliminarily revealing the underlying mechanism with insight into antioxidant regulation. PRACTICAL APPLICATION: This research is helpful for fresh-cut potato producers because a novel, safe, easy-to-carry out anti-browning solution was proposed. Dipping in 0.05% catalase solution for 5 min revealed color improvement in the quality of fresh-cut potato slices. The mechanism may rely on enhancing antioxidant ability (ascorbate peroxidase, and glutathione peroxidase, and 2,2-diphenyl-1-picrylhydrazyl scavenging), reducing reactive oxygen species (H2 O2 , O2 ·-, malondialdehyde) and controlling enzymatic browning reaction factors (polyphenol oxidase, peroxidase, and phenylalanine ammonia lyase, and phenol accumulation). This method shows promise for better meeting the requirements and demands of consumers for fresh quality products.
Keyphrases
  • hydrogen peroxide
  • nitric oxide
  • oxidative stress
  • quality improvement
  • combination therapy
  • high fat diet induced
  • adipose tissue
  • room temperature
  • deep learning
  • solid state
  • anaerobic digestion