Login / Signup

Chitooligosaccharide Conjugates Prepared Using Several Phenolic Compounds via Ascorbic Acid/H 2 O 2 Free Radical Grafting: Characteristics, Antioxidant, Antidiabetic, and Antimicrobial Activities.

Ajay MittalAvtar SinghBin ZhangWonnop VisessanguanSoottawat Benjakul
Published in: Foods (Basel, Switzerland) (2022)
Chitooligosaccharide (COS)-polyphenol (PPN) conjugates prepared using different PPNs, including gallic, caffeic, and ferulic acids, epigallocatechin gallate, and catechin, at various concentrations were characterized via UV-visible, FTIR, and 1 H-NMR spectra and tested for antioxidant, antidiabetic, and antimicrobial activities. Grafting of PPNs with COS was achieved. The highest conjugation efficiency was noticed for COS-catechin (COS-CAT), which was identified to have the highest total phenolic content (TPC) out of all the conjugates ( p < 0.05). For antioxidant activities, DPPH and ABTS radical scavenging activities (DPPH-RSA and ABTS-RSA, respectively), oxygen radical absorbance capacity (ORAC), ferric reducing antioxidant power (FRAP), and metal chelating activity (MCA) of all the samples were positively correlated with the TPC incorporated. COS-CAT had higher DPPH-RSA, ABTS-RSA, ORAC, and FRAP than COS and all other COS-PPN conjugates ( p < 0.05). In addition, COS-CAT also showed the highest antidiabetic activity of the conjugates, as determined by inhibitory activity toward α-amylase, α-glucosidase, and pancreatic lipase ( p < 0.05). COS-CAT also had the highest antimicrobial activity against all tested Gram-negative and Gram-positive bacteria ( p < 0.05). Overall, grafting of PPNs, especially CAT on COS, significantly enhanced bioactivities, including antioxidant and antimicrobial, which could be used to retard spoilage and enhance shelf-life of various food systems. Moreover, the ability of COS-CAT to inhibit digestive enzymes reflects its preventive effect on diabetes mellitus and its complications.
Keyphrases