American Football Helmet Effectiveness Against a Strain-Based Concussion Mechanism.
Kianoosh GhaziMark BegoniaSteven RowsonSongbai JiPublished in: Annals of biomedical engineering (2022)
Brain strain is increasingly being used in helmet design and safety performance evaluation as it is generally considered as the primary mechanism of concussion. In this study, we investigate whether different helmet designs can meaningfully alter brain strains using two commonly used metrics, peak maximum principal strain (MPS) of the whole brain and cumulative strain damage measure (CSDM). A convolutional neural network (CNN) that instantly produces detailed brain strains is first tested for accuracy for helmeted head impacts. Based on N = 144 impacts in 12 impact conditions from three random and representative helmet models, we conclude that the CNN is sufficiently accurate for helmet testing applications, for elementwise MPS (success rate of 98.6%), whole-brain peak MPS and CSDM (coefficient of determination of 0.977 and 0.980, with root mean squared error of 0.015 and 0.029, respectively). We then apply the technique to 23 football helmet models (N = 1104 impacts) to reproduce elementwise MPS. Assuming a concussion would occur when peak MPS or CSDM exceeds a threshold, we sweep their thresholds across the value ranges to evaluate the number of predicted hypothetical concussions that different helmets sustain across the impact conditions. Relative to the 12 impact conditions tested, we find that the "best" and "worst" helmets differ by an average of 22.5% in terms of predicted concussions, ranging from 0 to 42% (the latter achieved at the threshold value of 0.28 for peak MPS and 0.4 for CSDM, respectively). Such a large variation among helmets in strain-based concussion predictions demonstrate that helmet designs can still be optimized in a clinically meaningful way. The robustness and accuracy of the CNN tool also suggest its potential for routine use for helmet design and safety performance evaluation in the future. The CNN is freely available online at https://github.com/Jilab-biomechanics/CNN-brain-strains .
Keyphrases
- convolutional neural network
- resting state
- positive airway pressure
- white matter
- functional connectivity
- obstructive sleep apnea
- escherichia coli
- cerebral ischemia
- deep learning
- randomized controlled trial
- systematic review
- mild traumatic brain injury
- magnetic resonance imaging
- oxidative stress
- multiple sclerosis
- social media
- magnetic resonance
- healthcare
- machine learning
- mass spectrometry
- cross sectional
- molecularly imprinted
- current status
- diffusion weighted imaging
- liquid chromatography